Â鶹Éç

Explore the Â鶹Éç
This page has been archived and is no longer updated. Find out more about page archiving.


Accessibility help
Text only
Â鶹Éç Homepage
Â鶹Éç Radio
Â鶹Éç Radio 4 - 92 to 94 FM and 198 Long WaveListen to Digital Radio, Digital TV and OnlineListen on Digital Radio, Digital TV and Online

PROGRAMME FINDER:
Programmes
Podcasts
Presenters
PROGRAMME GENRES:
News
Drama
Comedy
Science
Religion|Ethics
History
Factual
Messageboards
Radio 4 Tickets
RadioÌý4 Help

Contact Us

Like this page?
Send it to a friend!

Ìý

Science
ANOTHER 5 NUMBERS: The Largest Prime Number
MISSED A PROGRAMME?
Go to the Listen Again page
Simon Singh investigates another five very important numbers.
Wednesday 29 October 2003 3.45-4.00pm
Prime Numbers
Listen againÌýListen again to Programme 3: Prime Numbers

Think of a number. Any number. Chances are you haven't plumped for 213,466,917 -1. To get this, you would need to keep multiplying 2 by itself 13,466,917 times, and then subtract 1 from the result. When written down it's 4,053,900 digits long and fills 2 telephone directories. So, as you can imagine, it's not the kind of number you're likely to stumble over often. Unless you're Bill Gates checking your bank statement at the end of the month.


So why is this rather cumbersome number so important? Discovered by 20 year-old Canadian, Michael Cameron in 2001, its significance stems mainly from the fact that it is prime. And at present, it stands as the "Titanic", or largest prime number known to mathematicians.

Primes, as drummed into us at school, are any number whose only divisors are 1 and itself. Therefore, 2,3,5,7 are primes but 10 isn't, as it can also be divided by 2 and 5. Primes occupy a special place in mathematics because they are considered to be the building blocks of arithmetic. 15, for example, can be deconstructed to its prime foundations of 3x5. All numbers can be similarly expressed as a series of primes multiplied together.

Cameron's "Titanic" discovery has the further distinction of belonging to the subset of prime numbers known as Mersenne. A Mersenne prime takes the form 2p-1, where p is the number of times the original figure must be multiplied by itself. From the result you must then subtract 1. Therefore 7 equals 23-1, and as such, forms one of the only 39 Mersenne primes known to date.


At the time of the discovery, Cameron was taking part in the Great Internet Mersenne Prime Search (GIMPS). A global project, GIMPS utilises distributed computing power, where subscribers make available the idle time on their PCs for some serious prime number crunching. Formed in 1996 by George Woltman, GIMPS is geared exclusively towards the discovery of these super primes and has had an enviable track record, unearthing the last 5 out of the 39 known Mersennes.

This quest for bigger and better primes isn't just frivolously obsessive. It is hoped that these numbers can be used to form the basis of more secure encryption codes that will stymie the Internet hackers and credit card fraudsters.

To many, the challenge is intellectual but there can be financial incentives. A $100,000 award awaits the discoverer of the first ten million digit prime, and with each new Mersenne being approximately twice the size of the previous one, some lucky GIMP can't be far off the jackpot.

> Kepler's Conjecture >>>
Listen Live
Audio Help
DON'T MISS
Leading Edge
5 NUMBERS
Zero
Pi
Golden Ratio
Imaginary Number
Infinity
5 Numbers Quiz
ANOTHER 5 NUMBERS
The Number Four
The Number Seven
The Largest Prime
Kepler's Conjecture
Game Theory
Back to Main Page
OTHER SERIES
A Further 5 Numbers
Five Shapes
Science, Nature & Environment Programmes

Archived Programmes

News & Current Affairs | Arts & Drama | Comedy & Quizzes | Science | Religion & Ethics | History | Factual

Back to top



About the Â鶹Éç | Help | Terms of Use | Privacy & Cookies Policy
Ìý