Â鶹Éç

Explore the Â鶹Éç
This page has been archived and is no longer updated. Find out more about page archiving.


Accessibility help
Text only
Â鶹Éç Homepage
Â鶹Éç Radio
Â鶹Éç Radio 4 - 92 to 94 FM and 198 Long WaveListen to Digital Radio, Digital TV and OnlineListen on Digital Radio, Digital TV and Online

PROGRAMME FINDER:
Programmes
Podcasts
Presenters
PROGRAMME GENRES:
News
Drama
Comedy
Science
Religion|Ethics
History
Factual
Messageboards
Radio 4 Tickets
RadioÌý4 Help

Contact Us

Like this page?
Send it to a friend!

Ìý

Science
ANOTHER 5 NUMBERS: The Number Seven
MISSED A PROGRAMME?
Go to the Listen Again page
Simon Singh investigates another five very important numbers.
Tuesday 28 October 2003 3.45-4.00pm

Picture a gambler. Is it George Clooney, tuxedo ruffled after an all-nighter at a Vegas Black Jack table, or your old Aunt Doris putting down her yearly quid-on-the-nose for the Grand National? Recent research would suggest that it's neither. Your inveterate gambler is far more likely to be sporting leather patches at their elbows, an unhealthy appetite for corduroy, and a penchant for M-Series rather than Martinis, shaken or stirred. Some mathematicians are putting their mathematical theory where their mouth is and are betting the shirts, stuffed or otherwise, off their backs.

Playing cards

Listen againÌý Listen again to Programme 2: The Number Seven

Games of chance don't necessarily afford an equal chance of winning to all players. Certain gamblers savvy enough to do the maths have been exploiting the weaknesses of some games to their advantage for years. Lazy shuffling which doesn't completely randomise a deck of cards, for example, offers anyone with a head for probability theory the edge to trump their fellow gamblers. So how do you overcome this and create a level playing field?

In 1990, American mathematicians Persi Diaconis and David Bayer suggested that 7 shuffles are sufficient to achieve an acceptable degree of randomness in a deck of 52 cards. With 6 or fewer shuffles, the original order of the cards is still strongly in evidence and beyond 7, nothing is gained in terms of increased randomness.


They based their research on that stalwart of bridge and poker, the riffle shuffle, where a deck of cards is roughly cut in half and then interleaved unevenly from left hand to right. They created a mathematical model of the riffle shuffle and postulated how many such manoeuvres would result in a fair dispersal of the cards. The assumption was that more shuffles would increase the randomness but interestingly, Diaconis and Bayer's work highlighted something inherent in a variety of mixing processes. Abrupt transitions from order to randomness can occur when two parts are mixed. Diaconis uses the analogy of mixing a bowl of black and white beads. "For a while there are still big streaks of black and white but all of a sudden it gets grey and stays grey." This suggests that mathematically there is a critical point where order shifts into chaos and in the case of a pack of cards and the riffle shuffle that is lucky number 7.

Diaconis and Bayer may have been showered in glory for their discovery, but they have also created a fair few enemies along the way. Tournament bridge players around the world begrudgingly shuffle 7 times. Is it the case that mathematics has created a level playing field or a generation of card players with RSI?

> Prime Numbers >>>
Listen Live
Audio Help
DON'T MISS
Leading Edge
5 NUMBERS
Zero
Pi
Golden Ratio
Imaginary Number
Infinity
5 Numbers Quiz
ANOTHER 5 NUMBERS
The Number Four
The Number Seven
The Largest Prime
Kepler's Conjecture
Game Theory
Back to Main Page
OTHER SERIES
A Further 5 Numbers
Five Shapes
Science, Nature & Environment Programmes

Archived Programmes

News & Current Affairs | Arts & Drama | Comedy & Quizzes | Science | Religion & Ethics | History | Factual

Back to top



About the Â鶹Éç | Help | Terms of Use | Privacy & Cookies Policy
Ìý